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Abstract Many studies have investigated the contributions of vision, touch, and proprioception 
to body ownership, i.e., the multisensory perception of limbs and body parts as our own. However, 
the computational processes and principles that determine subjectively experienced body owner-
ship remain unclear. To address this issue, we developed a detection-like psychophysics task based 
on the classic rubber hand illusion paradigm, where participants were asked to report whether the 
rubber hand felt like their own (the illusion) or not. We manipulated the asynchrony of visual and 
tactile stimuli delivered to the rubber hand and the hidden real hand under different levels of visual 
noise. We found that: (1) the probability of the emergence of the rubber hand illusion increased with 
visual noise and was well predicted by a causal inference model involving the observer computing 
the probability of the visual and tactile signals coming from a common source; (2) the causal infer-
ence model outperformed a non-Bayesian model involving the observer not taking into account 
sensory uncertainty; (3) by comparing body ownership and visuotactile synchrony detection, we 
found that the prior probability of inferring a common cause for the two types of multisensory 
percept was correlated but greater for ownership, which suggests that individual differences in 
rubber hand illusion can be explained at the computational level as differences in how priors are 
used in the multisensory integration process. These results imply that the same statistical principles 
determine the perception of the bodily self and the external world.

Editor's evaluation
In the rubber hand illusion, a rubber hand feels as if being part of one's body when stroked in 
synchrony with one's own occluded hand. By varying the temporal lags between the strokes to the 
rubber and to the real hand, and visual noise, the authors suggest that body ownership is governed 
by an active and probabilistic causal inference process that uses both prior knowledge and sensory 
uncertainty. The authors argue that probabilistic functions rather than fixed multisensory integration 
rules governs body ownership, thereby opening new venues for investigating its computational prin-
ciples. The evidence is compelling, and the findings advanced our fundamental understanding of the 
computational principles of body ownership.

Introduction
The body serves as an anchor point for experiencing the surrounding world. Humans and animals 
need to be able to perceive what constitutes their body at all times, i.e., which objects are part of 
their body and which are not, to effectively interact with objects and other individuals in the external 
environment and to protect their physical integrity through defensive action. This experience of the 
body as one’s own, referred to as ‘body ownership’ (Ehrsson, 2012), is automatic and perceptual in 
nature and depends on integrating sensory signals from multiple sensory modalities, including vision, 
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touch, and proprioception. We thus experience our physical self as a blend of sensory impressions 
that are combined into a coherent unitary experience that is separable from the sensory impressions 
associated with external objects, events, and scenes in the environment. This perceptual distinction 
between the self and nonself is fundamental not only for perception and action but also for higher 
self-centered cognitive functions such as self-recognition, self-identity, autobiographical memory, 
and self-consciousness (Banakou et al., 2013; Beaudoin et al., 2020; Bergouignan et al., 2014; 
Blanke et al., 2015; Maister and Tsakiris, 2014; Tacikowski et  al., 2020; van der Hoort et al., 
2017). Body ownership is also an important topic in medicine and psychiatry, as disturbances in bodily 
self-perception are observed in various neurological (Brugger and Lenggenhager, 2014; Jenkinson 
et al., 2018) and psychiatric disorders (Costantini et al., 2020; Keizer et al., 2014; Saetta et al., 
2020), and body ownership is a critical component of the embodiment of advanced prosthetic limbs 
(Collins et al., 2017; Makin et al., 2017; Niedernhuber et al., 2018; Petrini et al., 2019). Thus, 
understanding how body ownership is generated is an important goal in psychological and brain 
sciences.

The primary experimental paradigm for investigating the sense of body ownership has been the 
rubber hand illusion (Botvinick and Cohen, 1998). In the rubber hand illusion paradigm, participants 
watch a life-sized rubber hand being stroked in the same way and at the same time as strokes are 
delivered to their real passive hand, which is hidden from view behind a screen. After a period of 
repeated synchronized strokes, most participants start to feel the rubber hand as their own and sense 
the touches of the paintbrush on the rubber hand where they see the model hand being stroked. 
The illusion depends on the match between vision and somatosensation and is triggered when the 
observed strokes match the sensed strokes on the hidden real hand and when the two hands are 
placed sufficiently close and in similar positions. A large body of behavioral research has characterized 
the temporal (Shimada et al., 2009; Shimada et al., 2014), spatial (Lloyd, 2007; Preston, 2013), and 
other (e.g. form and texture; Filippetti et al., 2019; Holmes et al., 2006; Lin and Jörg, 2016; Lira 
et al., 2017; Tieri et al., 2015; Ward et al., 2015) rules that determine the elicitation of the rubber 
hand illusion and have found that these rules are reminiscent of the spatial and temporal congruence 
principles of multisensory integration (Ehrsson, 2012; Kilteni et al., 2015). Moreover, neuroimaging 
studies associate body ownership changes experienced under the rubber hand illusion with activa-
tions of multisensory brain regions (Ehrsson et al., 2004; Guterstam et al., 2019a; Limanowski and 
Blankenburg, 2016). However, we still know very little about the perceptual decision process that 
determines whether sensory signals should be combined into a coherent own-body representation or 
not, i.e., the multisensory binding problem that lays at the heart of body ownership and the distinction 
between the self and nonself.

The current study goes beyond the categorical comparisons of congruent and incongruent 
conditions that have dominated the body representation literature and introduces a quantitative 
model-based approach to investigate the computational principles that determine body ownership 
perception. Descriptive models (e.g. Gaussian fit) traditionally used in psychophysics experiments are 
useful to provide detailed statistical summaries of the data. These models describe ‘what’ percep-
tion emerges in response to stimulation without making assumptions about the underlying sensory 
processing. However, computational approaches using process models make quantitative assump-
tions on ‘how’ the final perception is generated from sensory stimulation. Among these types of 
models, Bayesian causal inference (BCI) models (Körding et al., 2007) have recently been used to 
explain the multisensory perception of external objects (Cao et al., 2019; Kayser and Shams, 2015; 
Rohe et al., 2019), including the integration of touch and vision (Badde et al., 2020). The interest in 
this type of model stems from the fact that it provides a formal solution to the problem of deciding 
which sensory signals should be bound together and which should be segregated in the process of 
experiencing coherent multisensory objects and events. In BCI models, the most likely causal structure 
of multiple sensory events is estimated based on spatiotemporal correspondence, sensory uncer-
tainty, and prior perceptual experiences; this inferred causal structure then determines to what extent 
sensory signals should be integrated with respect to their relative reliability.

In recent years, it has been proposed that this probabilistic model could be extended to the sense 
of body ownership and the multisensory perception of one’s own body (Fang et al., 2019; Kilteni 
et al., 2015; Samad et al., 2015). In the case of the rubber hand illusion, the causal inference principle 
predicts that the rubber hand should be perceived as part of the participant’s own body if a common 
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cause is inferred for the visual, tactile, and proprioceptive signals, meaning that the real hand and 
rubber hand are perceived as the same. Samad et al., 2015 developed a BCI model for the rubber 
hand illusion based on the spatiotemporal characteristics of visual and somatosensory stimulation 
but did not quantitatively test this model. These authors used congruent and incongruent condi-
tions and compared questionnaire ratings and skin conductance responses obtained in a group of 
participants (group level) to the model simulations; however, they did not fit their model to individual 
responses, i.e., did not quantitatively test the model. Fang et al., 2019 conducted quantitative model 
testing, but a limitation of their work is that they did not use body ownership perceptual data but 
an indirect behavioral proxy of the rubber hand illusion (reaching error) that could reflect processes 
other than body ownership (arm localization for motor control). More precisely, these authors devel-
oped a visuoproprioceptive rubber hand illusion based on the action of reaching for external visual 
targets. The error in the reaching task, induced by manipulating the spatial disparity between the 
image of the arm displayed on a screen and the subject’s (a monkey or human) real unseen arm, was 
successfully described by a causal inference model. In this model, the spatial discrepancy between 
the seen and felt arms is taken into account to determine the causal structure of these sensory stimuli. 
The inferred causal structure determines to what extent vision and proprioception are integrated 
in the final percept of arm location; this arm location estimate influences the reaching movement 
by changing the planned action’s starting point. Although such motor adjustments to perturbations 
in sensory feedback do not equate to the sense of body ownership, in the human participants, the 
model’s outcome was significantly correlated with the participants’ subjective ratings of the rubber 
hand illusion. While these findings are interesting (Ehrsson and Chancel, 2019), the evidence for a 
causal inference principle governing body ownership remains indirect, using the correlation between 
reaching performance and questionnaire ratings of the rubber hand illusion instead of a quantitative 
test of the model based on perceptual judgments of body ownership.

Thus, the present study’s first goal was to test whether body ownership is determined by a Bayesian 
inference of a common cause. We developed a new psychophysics task based on the classical rubber 
hand illusion to allow for a trial-by-trial quantitative assessment of body ownership perception and 
then fitted a BCI model to the individual-level data. Participants performed a detection-like task 
focused on the ownership they felt over a rubber hand within a paradigm where the tactile stimulation 
they felt on their real hidden hand was synchronized with that of the rubber hand or systematically 
delayed or advanced in intervals of 0–500 ms. We calculated the percentage of trials in which partic-
ipants felt the rubber hand as theirs for each degree of asynchrony. A Bayesian observer (or ‘senser’, 
as the rubber hand illusion creates a bodily illusion that one feels) would perceive the rubber hand 
as their own hand when the visual and somatosensory signals are inferred as coming from a common 
source, a single hand. In this BCI for body ownership model (which we refer to as the ‘BCI model’), the 
causal structure is inferred by comparing the absolute value of the measured asynchrony between the 
participants’ seen and felt touches to a criterion that depends on the prior probability of a common 
source for vision and somatosensation.

A second key aim was to test whether sensory uncertainty influences the inference of a common 
cause for the rubber hand illusion, which is a critical prediction of the BCI models not tested in earlier 
studies (Fang et al., 2019; Samad et al., 2015). Specifically, a Bayesian observer would take into 
account trial-to-trial fluctuations in sensory uncertainty when making perceptual decisions, changing 
their decision criterion in a specific way as a function of the sensory noise level of the current trial 
(Keshvari et al., 2012; Körding et al., 2007; Magnotti et al., 2013; Qamar et al., 2013; Zhou et al., 
2020). Alternatively, the observer might incorrectly assume that sensory noise does not change or 
might ignore variations in sensory uncertainty. Such an observer would make a decision regarding 
whether the rubber hand is theirs or not based on a fixed criterion (FC) that does not depend on 
sensory uncertainty. Suboptimal but potentially ‘easy-to-implement’ observer models using a FC deci-
sion rule have often been used to challenge Bayesian models of perception (Badde et al., 2020; 
Qamar et al., 2013; Rahnev et al., 2011; Stengård and van den Berg, 2019; Zhou et al., 2020). To 
address whether humans optimally adjust the perceptual decision made to the level of sensory uncer-
tainty when inferring a common cause for body ownership, we varied the level of sensory noise from 
trial to trial and determined how well was the data fit from our BCI model compared to a FC model.

Finally, we directly compared body ownership and a basic multisensory integration task within 
the same computational modeling framework. Multisensory synchrony judgment is a widely used 
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task to examine the integration versus segregation of signals from different sensory modalities 
(Colonius and Diederich, 2020), and such synchrony perception follows BCI principles (Adam and 
Noppeney, 2014; Magnotti et al., 2013; Noel et al., 2018; Noppeney and Lee, 2018; Shams 
et  al., 2005). Thus, we reasoned that by comparing ownership and synchrony perceptions, we 
could directly test our assumption that both types of multisensory percepts follow similar proba-
bilistic causal inference principles and identify differences that can advance our understanding of 
the relationships of the two (see further information below). To this end, we collected both visuo-
tactile synchrony judgments and body ownership judgments of the same individuals under the 
same conditions; only instructions regarding which perceptual feature to detect – hand ownership 
or visuotactile synchrony – differed. Thus, we fit both datasets using our BCI model. We modeled 
shared sensory parameters and lapses for both tasks as we applied the same experimental stimula-
tions to the same participants, and we compared having a shared prior for both tasks versus having 
separate priors for each task and expected the latter to improve the model fit (see below). Further-
more, we tested whether the estimates of prior probabilities for a common cause in the ownership 
and synchrony perceptions were correlated in line with earlier observations of correlations between 
descriptive measures of the rubber hand illusion and individual sensitivity to asynchrony (Costantini 
et al., 2016; Shimada et al., 2014). We also expected the prior probability of a common cause 
to be systematically higher for body ownership than for synchrony detection; this a priori greater 
tendency to integrate vision and touch for body ownership would explain how the rubber hand 
illusion could emerge despite the presence of noticeable visuotactile asynchrony (Shimada et al., 
2009; Shimada et al., 2014). In the rubber hand illusion paradigm, the rubber hand’s placement 
corresponds with an orientation and location highly probable for one’s real hand, a position that 
we often adopt on a daily basis. Such previous experience likely facilitates the emergence of the 
rubber hand illusion we theorized (Samad et al., 2015) while not necessarily influencing visuotactile 
simultaneity judgments (Smit et al., 2019).

Our behavioral and modeling results support the predictions made for the three main aims 
described above. Thus, collectively, our findings establish the uncertainty-based inference of 
a common cause for multisensory integration as a computational principle for the sense of body 
ownership.

Figure 1. Elicited rubber hand illusion under different levels of visual noise. (A) Colored dots represent the mean 
reported proportion of elicited rubber hand illusions (± SEM) for each asynchrony for the 0 (black), 30 (orange), 
and 50% (red) noise conditions. (B) Bars represent how many times in the 84 trials the participants answered ‘yes 
(the rubber hand felt like my own hand)’ under the 0 (black), 30 (orange), and 50% (red) noise conditions; gray dots 
are individual data points. There was a significant increase in the number of ‘yes’ answers when the visual noise 
increased * p<0.001.

The online version of this article includes the following source data for figure 1:

Source data 1. Sum of "yes" answer for the different asynchrony and noise levels tested in the body ownership 
judgment task used in Figure 1.

https://doi.org/10.7554/eLife.77221
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Results
Behavioral results
In this study, participants performed a detection-like task on the ownership they felt toward a rubber 
hand; the tactile stimulation they felt on their hidden real hand (taps) was synchronized with the 
taps applied to the rubber hand that they saw or systematically delayed (negative asynchronies) or 
advanced (positive asynchronies) by 150, 300, or 500 ms. Participants were instructed to report if 
‘yes or no (the rubber hand felt like it was my hand)’. For each degree of asynchrony, the percentage 
of trials in which the participants felt like the rubber hand was theirs was determined (Figure 1A). 
Three different noise conditions were tested, corresponding to 0, 30, and 50% of visual noise being 
displayed via augmented reality glasses (see Materials and methods). The rubber hand illusion was 
successfully induced in the synchronous condition; indeed, the participants reported perceiving the 
rubber hand as their own hand in 94 ± 2% (mean ± SEM) of the 12 trials when the visual and tactile 
stimulations were synchronous; more precisely, 93 ± 3%, 96 ± 2%, and 95 ± 2% of responses were 
‘yes’ responses for the conditions with 0, 30, and 50% visual noise, respectively. Moreover, for every 
participant, increasing the asynchrony between the seen and felt taps decreased the prevalence of the 
illusion. When the rubber hand was touched 500 ms before the real hand, the illusion was reported 
in only 20 ± 5% of the 12 trials (noise level 0: 13 ± 4%, noise level 30: 21 ± 5%, and noise level 50: 
26 ± 7%); when the rubber hand was touched 500 ms after the real hand, the illusion was reported 
in only 19 ± 6% of the 12 trials (noise level 0: 10 ± 3%, noise level 30: 18 ± 5%, and noise level 50: 
29 ± 6%; main effect of asynchrony: F[6, 84]=5.97, p<0.001; for the individuals’ response plots, see 
Figure 2—figure supplements 1–4). Moreover, regardless of asynchrony, the participants perceived 
the illusion more often when the level of visual noise increased (F[2, 28]=22.35, p<0.001; Holmes’ post 
hoc test: noise level 0 versus noise level 30: p=0.018, davg = 0.4; noise level 30 versus noise level 50: 
p=0.005, davg = 0.5; noise level 0 versus noise level 50: p<0.001, davg = 1; Figure 1B). The next step 
was to examine whether these behavioral results can be accounted for by the BCI principles, including 
the increased emergence of the rubber hand illusion with visual noise.

BCI model fit to body ownership
Our main causal inference model, the BCI model, assumes that the observer infers the causal structure 
of the visual and tactile signal to decide to what extent they should be merged into one coherent 
percept. In this model, the inference depends on the prior probability of the common cause and the 
trial-to-trial sensory uncertainty. Thus, this model has five free parameters: ‍psame‍ is the prior proba-
bility of a common cause for vision and touch, independent of any sensory stimulation, ‍σ0, σ30, σ50‍ 
correspond to the noise impacting the measured visuotactile asynchrony in each of the three noise 
conditions, and ‍λ‍ is the lapse rate to account for random guesses and unintended responses (see 
Materials and methods and Appendix 1 for more details). This BCI model fits the observed data well 
(Figure 2A). This finding supports our hypothesis that the sense of body ownership is based on an 
uncertainty-based inference of a common cause. Three further observations can be noted. First, the 
probability of a common cause for the visual and tactile stimuli ‍psame‍ exceeded 0.5 (mean ± SEM: 
0.80±0.05), meaning that in the context of body ownership, observers seemed to assume that vision 
and touch were more likely to come from one source than from different sources. This result broadly 
corroborates previous behavioral observations that the rubber hand illusion can emerge despite 
considerable sensory conflicts, for example, visuotactile asynchrony of up to 300 ms (Shimada et al., 
2009). Second, the estimates for the sensory noise ‍σ‍ increased with the level of visual white noise: 
116±13 ms, 141±25 ms, and 178±33 ms for the 0, 30, and 50% visual noise conditions, respectively 
(mean ± SEM); this result echoes the increased sensory uncertainty induced by our experimental 
manipulation. Finally, the averaged lapse rate estimate ‍λ‍ was rather low, 0.08±0.04, as expected for 
this sort of detection-like task, when participants were performing the task according to the instruc-
tions (see Figure 2—figure supplement 1 for individual fit results).

Comparing the BCI model to Bayesian and non-Bayesian alternative 
models
Next, we compared our BCI model to alternative models (see Materials and methods and Appendix 
1). First, we observed that adding an additional parameter to account for observer-specific stimulation 
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Figure 2. Observed and predicted detection responses for body ownership in the rubber hand illusion. Bars represent how many times across the 
84 trials participants answered ‘yes’ in the 0 (black), 30 (orange), and 50% (red) noise conditions (mean ± SEM). Lighter polygons denote the Bayesian 
causal inference (BCI) model predictions (A) and fixed-criterion (FC) model predictions (C) for the different noise conditions. Observed data refer to 
0 (black dots), 30 (orange dots), and 50% (red dots) visual noise and corresponding predictions (mean ± SEM; gray, yellow, and red shaded areas, 
respectively) for the BCI model (B) and FC model (D).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Parameter estimates for the BCI* model use in Figure 2.

Figure supplement 1. Individual data and BCI model fit.

Figure supplement 2. Individual data and FC model fit.

Figure supplement 3. Individual data and BCI* model fit.

Figure supplement 4. Individual data and BCIbias model fit.

Figure supplement 5. Predicted probabilty of emergence of the rubber hand illusion by the BCI model (upper table) and the FC model (lower table).

https://doi.org/10.7554/eLife.77221
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uncertainty in the BCI* model did not improve the fit of the BCI model (Table 1, Figure 2—figure 
supplement 3). This observation suggests that assuming the observer’s assumed stimulus distribution 
has the same SD as the true stimulus distribution was reasonable, i.e., allowing a participant-specific 
value for ‍σS‍ did not improve the fit of our model enough to compensate for the loss of parsimony.

Second, an important alternative to the Bayesian model is a model that ignores variations in sensory 
uncertainty when judging if the rubber hand is one’s own, for example, because the observer incor-
rectly assumes that sensory noise does not change. This second alternative model based on a fixed 
decisional criterion is the FC model. The goodness of fit of the BCI model was found to be higher than 
that of the FC model (Figure 2, Table 1, and Figure 2—figure supplement 2). This result shows that 
the BCI model provides a better explanation for the ownership data than the simpler FC model that 
does not take into account the sensory uncertainty in the decision process.

Comparison of the body ownership and synchrony tasks
The final part of our study focused on the comparison of causal inferences of body ownership and 
visuotactile synchrony detection. In an additional task, participants were asked to decide whether the 
visual and tactile stimulation they received happened at the same time, i.e., whether the felt and seen 
touches were synchronous or not. The procedure was identical to the body ownership detection task 
apart from a critical difference in the instructions, which was now to detect if the visual and tactile 
stimulations were synchronous (instead of judging illusory rubber hand ownership).

Extension analysis results (Table 2 and Figure 3 and Figure 3—figure 
supplement 1)
The BCI model fits the combined dataset from both ownership and synchrony tasks well (Figure 3B 
and C and Figure 3—figure supplement 1). Since the model used identical parameters (or iden-
tical parameters except for one), this observation supports the hypothesis that both the rubber hand 
illusion and visuotactile synchrony perception are determined by similar multisensory causal infer-
ence processes. However, in agreement with one of our other hypotheses, the goodness of fit of 

Table 1. Bootstrapped CIs (95% CI) of the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) differences between our main model Bayesian causal inference (BCI) and 
the BCI* (first line) and fixed criterion (FC; second line) models.
A negative value means that the BCI model is a better fit. Thus, the BCI model outperformed the 
other two.

Model comparison

AIC (95% CI) BIC (95% CI)

Lower bound Raw sum Upper bound Lower bound Raw sum
Upper 
bound

BCI – BCI* –28 –25 –21 –81 –77 –74

BCI – FC –116 –65 –17 –116 –65 –17

Finally, the pseudo-R2 were of the same magnitude for each model (mean ± SEM: BCI = 0.62 ± 0.04, BCI* = 0.62 
± 0.04, FC = 0.60 ± 0.05). However, the exceedance probability analysis confirmed the superiority of the Bayesian 
models over the fixed criterian one for the ownership data (family exceedance probability [EP]: Bayesian: 0.99, 
FC: 0.0006; when comparing our main model to the FC: protected-EPFC = 0.13, protected-EPBCI = 0.87, posterior 
probabilities: RFX: p[H1|y] = 0.740, null: p[H0|y] = 0.260). 

Table 2. Bootstrapped CIs (95% CI) for the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) differences between shared and different ‍psame‍ values for the Bayesian 
causal inference (BCI) model in the extension analysis.
A negative value means that the model with different ‍psame‍ values is a better fit.

Model comparison

AIC (95% CI) BIC (95% CI)

Lower bound Raw sum Upper bound Lower bound Raw sum Upper bound

Different psame –
shared parameters –597 –352 –147 –534 –289 –83

https://doi.org/10.7554/eLife.77221
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the model improved greatly when the probability of a common cause (‍psame‍) differed between the 
two tasks (Table 2). Importantly, ‍psame‍ was significantly lower for the synchrony judgment task (mean 
± SEM: 0.65±0.04) than for the ownership judgment task (mean ± SEM: 0.83±0.04, paired t-test: 
t=5.9141, df = 14, and p<0.001). This relatively stronger a priori probability for a common cause 
for body ownership compared to visuotactile synchrony judgments supports the notion that body 
ownership and visuotactile event synchrony correspond to distinct multisensory perceptions, albeit 
being determined by similar causal probabilistic causal inference principles. Finally, in line with our 
hypothesis, we found that the ‍psame‍ values estimated separately for the two tasks were correlated 
(Pearson correlation: p=0.002, cor = 0.71; Figure 3A). That is, individuals who displayed a higher prior 
probability of combining the basic tactile and visual signals and perceiving the visuotactile synchrony 
of the events also showed a greater likelihood of combining multisensory signals in the ownership task 

B. all shared parametersA.

Figure 3. Extension analysis results. (A) Correlation between the prior probability of a common cause ‍psame‍ estimated for the ownership and synchrony 
tasks in the extension analysis. The ‍psame‍ estimate is significantly lower for the synchrony task than for the ownership task. The solid line represents the 
linear regression between the two estimates, and the dashed line represents the identity. Numbers denote the participants’ numbers. (B and C) Colored 
dots represent the mean reported proportion of perceived synchrony for visual and tactile stimulation for each asynchrony under the 0 (purple), 30 
(blue), and 50% (light blue) noise conditions (±SEM). Lighter shaded areas show the corresponding Bayesian causal inference (BCI) model predictions 
made when all parameters are shared between the ownership and synchrony data (B) and when ‍psame‍ is estimated separately for each dataset (C) for 
the different noise conditions (see also Figure 3—figure supplement 1).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Parameter estimates for the extension and transfer analysis and collected answers in the synchrony detection tasks used in Figure 3.

Figure supplement 1. Mean + SEM behavioural (dots) and model (shaded areas) results for body ownership (A & C) and synchrony detection (B & D) 
tasks in the extension analysis.

Figure supplement 2. Mean + SEM behavioural (dots) and model (shaded areas) results for body ownership (A & C) and synchrony detection (B & D) 
tasks in the transfer analysis.

Figure supplement 3. Perceived synchrony under different levels of visual noise.

https://doi.org/10.7554/eLife.77221
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and experiencing the rubber hand illusion. This observation corroborates the link between visuotac-
tile synchrony detection and body ownership perception and provides a new computational under-
standing of how individual differences in multisensory integration can explain individual differences in 
the rubber hand illusion.

Transfer analysis results (Table 3, Figure 3—figure supplement 2)
Finally, we compared the body ownership and synchrony tasks using what we call a transfer analysis. 
We used the parameters estimated for the ownership task to fit the synchrony task data (O to S) 
or the parameters estimated for the synchrony task to fit the ownership task data (S to O). Leaving 

‍psame‍ as a free parameter always led to a much better fit of the data, as displayed in Table 3 (see also 
Figure 3—figure supplement 2). Thus, this analysis leads us to the same conclusion as that of the 
extension analysis. The body ownership task and synchrony task involved different processing of the 
visual and somatosensory signals for the participants, and this difference in behavioral responses was 
well captured when two different a priori probabilities for a common cause were used to model each 
task.

Note that the exceedance probability analysis also confirmed the superiority of the Bayesian 
models over the FC one for the synchrony data when analyzed separately from the ownership data 
(family exceedance probability: Bayesian: 0.71, FC: 0.29; when comparing our main model to the 
FC: protected-EPFC=0.46, protected-EPBCI=0.54, posterior probabilities: RFX (random-effect analysis): 
p[H1|y]=0.860, null: p[H0|y]=0.140). Further details about the behavioral results for the synchrony 
judgment task can be found in the Figure 3—figure supplement 3.

Discussion
The main finding of the present study is that body ownership perception can be described as a causal 
inference process that takes into account sensory uncertainty when determining whether an object 
is a part of one’s own body or not. Participants performed a detection-like task on the ownership 
they felt over a rubber hand placed in full view in front of them in our version of the rubber hand 
illusion paradigm that involved the use of psychophysics, robotically controlled sensory stimulation, 
and augmented reality glasses (to manipulate visual noise); the tactile stimulation that the participants 
felt on their own hidden hand was synchronized with the taps applied to the rubber hand that they 
saw or systematically delayed or advanced. For each degree of asynchrony, the percentage of trials 
for which the participants felt like the rubber hand was theirs was determined. We found that the 
probability of the emergence of the rubber hand illusion was better predicted by a Bayesian model 
that takes into account the trial-by-trial level of sensory uncertainty to calculate the probability of a 
common cause for vision and touch given their relative onset time than by a non-Bayesian (FC) model 
that does not take into account sensory uncertainty. Furthermore, in comparing body ownership and 
visuotactile synchrony detection, we found interesting differences and similarities that advance our 
understanding of how the perception of multisensory synchrony and body ownership is related at the 
computational level and how individual differences in the rubber hand illusion can be explained as 
individual differences causal inference. Specifically, the prior probability of a common cause was found 
to be higher for ownership than for synchrony detection, and the two prior probabilities were found 

Table 3. Bootstrapped CIs (95% CIs) of the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) differences between the partial and full transfer analyses for the Bayesian 
causal inference (BCI) model.
‘O to S’ corresponds to the fitting of synchrony data by the BCI model estimates from ownership 
data. ‘S to O’ corresponds to the fitting of ownership data by the BCI model estimates from 
synchrony data. A negative value means that the partial transfer model is a better fit.

Transfer direction

AIC (partial – full transfer, 95% CI) BIC (partial – full transfer, 95% CI)

Lower bound Raw sum Upper bound Lower bound Raw sum
Upper 
bound

O to S –1837 –1051 –441 –1784 –998 –388

S to O –1903 –1110 –448 –1851 –1057 –394
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to be correlated across individuals. We conclude that body ownership is a multisensory perception 
of one’s own body determined by an uncertainty-based probabilistic inference of a common cause.

Body ownership perception predicted by inference of a common cause
One of the strengths of the present study lies in its direct, individual-level testing of a causal inference 
model on body ownership perceptual data. This novel means to quantify the rubber hand illusion 
based on psychophysics is more appropriate for computational studies focused on body ownership 
than traditional measures such as questionnaires or changes in perceived hand position (propriocep-
tive drift). Previous attempts made to apply BCI to body ownership were conducted at the group 
level by the categorical comparison of experimental conditions (Samad et al., 2015); however, such 
a group-level approach does not properly challenge the proposed models as required according to 
standards in the field of computational behavioral studies. The only previous study that used quanti-
tative Bayesian model testing analyzed target-reaching error in a virtual reality version of the rubber 
hand illusion (Fang et al., 2019), but reaching errors tend to be relatively small, and it is unclear how 
well the reaching errors correlate with the subjective perception of the illusion (Heed et al., 2011; 
Kammers et al., 2009; Newport et al., 2010; Newport and Preston, 2011; Rossi Sebastiano et al., 
2022; Zopf et al., 2011). Thus, the present study contributes to our computational understanding of 
body ownership as the first direct fit of the BCI model to individual-level ownership sensations judged 
under the rubber hand illusion.

Computational approaches to body ownership can lead to a better understanding of the multi-
sensory processing involved in this phenomenon than traditional descriptive approaches. The BCI 
framework informs us about how various sensory signals and prior information about body states are 
integrated at the computational level. Previous models of body ownership focus on temporal and 
spatial congruence rules and temporal and spatial ‘windows of integration;’ if visual and somatosen-
sory signals occur within a particular time window (Shimada et al., 2009; Costantini et al., 2016) and 
within a certain spatial zone (Lloyd, 2007; Brozzoli et al., 2012), the signals will be combined, and the 
illusion will be elicited (Ehrsson, 2012; Tsakiris, 2010; Makin et al., 2008). However, these models 
do not detail how this happens at the computational level or explain how the relative contribution 
of different sensory signals and top-down prior information dynamically changes due to changes 
in uncertainty. Instead of occurring due to a sequence of categorical comparisons as proposed by 
Tsakiris, 2010 or by a set of rigid temporal and spatial rules based on receptive field properties of 
multisensory neurons as implied by Ehrsson, 2012 or Makin et al., 2008, body ownership under the 
rubber hand illusion arises as a consequence of a probabilistic computational process that infers the 
rubber hand as the common cause of vision and somatosensation by dynamically taking into account 
all available sensory evidence given their relative reliability and prior information. The causal inference 
model further has greater predictive power than classical descriptive models; in that, it makes quan-
titative predictions about how illusion perception will change across a wide range of temporal asyn-
chronies and changes in sensory uncertainty. For example, the ‘time window of integration’ model 
– which is often used to describe the temporal constraint of multisensory integration (Meredith et al., 
1987; Stein and Meredith, 1993) – only provides temporal thresholds (asynchrony between two 
sensory inputs) above which multisensory signals will not be integrated (Colonius and Diederich, 
2004). In contrast, the present causal inference model explains how information from such asyn-
chronies is used together with prior information and estimates of uncertainty to infer that the rubber 
hand is one’s own or not. Even though the present study focuses on temporal visuotactile congru-
ence, spatial congruence (Fang et al., 2019; Samad et al., 2015) and other types of multisensory 
congruences (e.g. Ehrsson et al., 2005; Tsakiris et al., 2010; Ide, 2013; Crucianelli and Ehrsson, 
2022) would naturally fit within the same computational framework (Körding et al., 2007; Sato et al., 
2007). Thus, in extending beyond descriptive models of body ownership, our study supports the idea 
that individuals use probabilistic representations of their surroundings and their own body that take 
into account information about sensory uncertainty to infer the causal structure of sensory signals and 
optimally process them to create a clear perceptual distinction between the self and nonself.

From a broader cognitive neuroscience perspective, causal inference models of body ownership 
can be used in future neuroimaging and neurophysiological studies to investigate the underlying 
neural mechanisms of the computational processes. For example, instead of simply identifying frontal, 
parietal, and subcortical structures that show higher activity in the illusion condition compared to 
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control conditions that violate temporal and spatial congruence rules (Ehrsson et al., 2004; Ehrsson 
et al., 2005; Guterstam et al., 2013; Limanowski and Blankenburg, 2016; Guterstam et al., 2019a; 
Rao and Kayser, 2017), one can test the hypothesis that activity in key multisensory areas closely 
follows the predictions of the BCI model and correlates with specific parameters of this model. Such 
a model-based imaging approach, recently successfully used in audiovisual paradigms (Cao et al., 
2019; Rohe and Noppeney, 2015; Rohe and Noppeney, 2016; Rohe et al., 2019), can thus afford 
us a deeper understanding of the neural implementation of the causal inference for body ownership. 
From previous neuroimaging work (Ehrsson et al., 2004; Guterstam et al., 2013; Limanowski and 
Blankenburg, 2016; Guterstam et al., 2019a), anatomical and physiological considerations based on 
nonhuman primate studies (Avillac et al., 2007; Graziano et al., 1997; Graziano et al., 2000; Fang 
et al., 2019), and a recent model-based fMRI study on body ownership judgments (Chancel et al., 
2022), we theorize that neuronal populations in the posterior parietal cortex and premotor cortex 
could implement the computational processes of the uncertainty-based inference of a common cause 
of body ownership.

Observers take trial-to-trial sensory uncertainty into account in judging 
body ownership
The current study highlights the contribution of sensory uncertainty to body ownership by showing 
the superiority of a Bayesian model in predicting the emergence of the rubber hand illusion relative 
to a non-Bayesian model. Although BCI is an often-used model to describe multisensory processing 
from the behavioral to cerebral levels (Badde et al., 2020; Cao et al., 2019; Dokka et al., 2019; 
Kayser and Shams, 2015; Körding et al., 2007; Rohe et al., 2019; Rohe and Noppeney, 2015; 
Wozny et al., 2010), it is not uncommon to observe behaviors induced by sensory stimulation that 
diverge from strict Bayesian-optimal predictions (Beck et al., 2012). Some of these deviations from 
optimality can be explained by a contribution of sensory uncertainty to the perception that differs 
from that assumed under a Bayesian-optimal inference (Drugowitsch et al., 2016). Challenging the 
Bayesian-optimal assumption is thus a necessary good practice in computational studies (Jones and 
Love, 2011), and this is often done in studies of the perception of external sensory events, such as 
visual stimuli (Qamar et al., 2013; Stengård and van den Berg, 2019; Zhou et al., 2020). However, 
very few studies have investigated the role of sensory uncertainty in perceiving one’s own limbs 
from a computational perspective. Such studies explore the perception of limb movement trajectory 
(Reuschel et al., 2010), limb movement illusion (Chancel et al., 2016), or perceived static limb posi-
tion (van Beers et al., 1999; van Beers et al., 2002) but not the sense of body ownership or similar 
aspects of the embodiment of an object. These studies assume the full integration of visual and 
somatosensory signals and describe how sensory uncertainty is taken into account when computing 
a single-fused estimate of limb movement or limb position. However, none of these previous studies 
investigate inferences about a common cause. A comparison between Bayesian and non-Bayesian 
models was also missing from the above-described studies of the rubber hand illusion and causal 
inference (Fang et al., 2019; Samad et al., 2015). Thus, the current results reveal how uncertainty 
influences the automatic perceptual decision to combine or segregate bodily related signals from 
different sensory modalities and that this inference process better follows Bayesian principles than 
non-Bayesian principles. While we have argued that people take into account trial-to-trial uncer-
tainty when making their body ownership and synchrony judgments, it is also possible that they 
learn a criterion at each noise level (Ma and Jazayeri, 2014), as one might predict in standard signal 
detection theory. However, we believe this is unlikely because we used multiple interleaved levels of 
noise while withholding any form of experimental feedback. Thus, more broadly, our results advance 
our understanding of the multisensory processes that support the perception of one’s own body, as 
they serve as the first conclusive empirical demonstration of BCI in a bodily illusion. Such successful 
modeling of the multisensory information processing in body ownership is relevant for future compu-
tational work into bodily illusions and bodily self-awareness, for example, more extended frame-
works that also include contributions of interoception (Azzalini et al., 2019; Park and Blanke, 2019), 
motor processes (Burin et al., 2015; Burin et al., 2017), pre-existing stored representations about 
what kind of objects that may or may not be part of one’s body (Tsakiris et al., 2010), expectations 
(Chancel et al., 2021; Guterstam et al., 2019b Ferri et al., 2013), and high-level cognition (Lush 
et al., 2020; Slater and Ehrsson, 2022). Future quantitative computational studies like the present 
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one are needed to formally compare these different theories of body ownership and advance the 
corresponding theoretical framework.

In the present study, we compared the Bayesian hypothesis to a FC model. FC strategies are simple 
heuristics that could arise from limited sensory processing resources. Our body plays such a dominant 
and critical role in our experience of the world that one could easily imagine the benefits of an easy-
to-implement heuristic strategy for detecting what belongs to our body and what does not. Our body 
is more stable than our ever-changing environment, so in principle, a resource-effective and straight-
forward strategy for an observer could be to disregard, or not optimally compute, sensory uncertainty 
to determine whether an object in view is part of one’s own body or not. However, our analysis shows 
that the BCI model outperforms such a model. Thus, observers seem to take into account trial-to-trial 
sensory uncertainty to respond regarding their body ownership perception. More visual noise, i.e., 
increased visual uncertainty, increases the probability of the rubber hand illusion, consistent with the 
predictions of Bayesian probabilistic theory. Intuitively, this makes sense, as it is easier to mistake one 
partner’s hand for one’s own under poor viewing conditions (e.g. in semidarkness) than when viewing 
conditions are excellent. However, this basic effect of sensory uncertainty on own-body perception is 
not explained by classical descriptive models of the rubber hand illusion (Botvinick and Cohen, 1998; 
Tsakiris et al., 2010; Ehrsson, 2012; Makin et al., 2008). Thus, the significant impact of sensory 
uncertainty on the rubber hand illusion revealed here advances our understanding of the computa-
tional principles of body ownership and of bodily illusions and multisensory bodily perception more 
generally.

Relationship between body ownership and synchrony perception
The final part of our study focused on the comparison of causal inferences of body ownership 
and visuotactile synchrony detection. Previous studies have already demonstrated that audiovisual 
synchrony detection can be explained by BCI (Adam and Noppeney, 2014; Magnotti et al., 2013; 
Noel et al., 2018; Noppeney and Lee, 2018; Shams et al., 2005). We successfully extend this 
principle to visuotactile synchrony detection in the context of a rubber hand illusion paradigm. 
The results of our extension analysis using both ownership and synchrony data suggest that both 
multisensory perceptions follow similar computational principles in line with our expectations and 
previous literature. Whether the rubber hand illusion influences synchrony perception was not 
investigated in the present study, as the goal was to design ownership and synchrony tasks to be 
as identical as possible for the modeling. However, the results from the previous literature diverge 
regarding the potential influence of body ownership on synchrony judgment (Ide and Hidaka, 
2013; Maselli et al., 2016; Smit et al., 2019), so this issue deserves further investigation in future 
studies.

Body ownership and synchrony perception were better predicted when modeling different priors 
instead of a single shared prior. The goodness of fit of the BCI model is greatly improved when the 
a priori probability of a common cause is different for each task, even when the loss of parsimony 
due to an additional parameter is taken into account. This result holds whether the two datasets 
are fitted together (extension analysis), or the parameters estimated for one task are used to fit the 
other (transfer analysis). Specifically, the estimates of the a priori probability of a common cause 
were found to be smaller for the synchrony judgment than for the ownership judgment. This means 
that the degree of asynchrony had to be lower for participants to perceive the seen and felt taps as 
occurring simultaneously compared to the relatively broader degree of visuotactile asynchrony that 
still resulted in the illusory ownership of the rubber hand. This result suggests that a common cause 
for vision and touch outcomes is a priori more likely to be inferred for body ownership than for visuo-
tactile synchrony. We believe that this makes sense, as a single cause for visual and somatosensory 
impressions in the context of the ownership of a human-like hand in an anatomically matched position 
in sight is a priori a more probable scenario than a common cause for brief visual and tactile events 
that in principle could be coincidental and stem from visual events occurring far from the body. This 
observation is also consistent with previous studies reporting the induction of the rubber hand illu-
sion for visuotactile asynchronies of as long as 300 ms (Shimada et al., 2009), which are perceptually 
noted. While it seems plausible that psame reflects the real-world prior probability of a common cause 
of the visual and somatosensory signals, it could also be influenced by experimental properties of the 
task, demand characteristics (participants forming beliefs based on cues present in a testing situation, 
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Weber and Cook, 1972; Corneille and Lush, 2022; Slater and Ehrsson, 2022), and other cognitive 
biases.

How the a priori probabilities of a common cause under different perceptive contexts are formed 
remains an open question. Many studies have shown the importance of experience in shaping the 
prior (Adams et al., 2004; Chambers et al., 2017; Snyder et al., 2015), and recent findings also 
seem to point toward the importance of effectors in sensorimotor priors (Yin et al., 2019) and dynam-
ical adjustment during a task (Prsa et al., 2015). In addition, priors for own-body perception could be 
shaped early during development (Bahrick and Watson, 1985; Bremner, 2016; Rochat, 1998) and 
influenced by genetic and anatomical factors related to the organization of cortical and subcortical 
maps and pathways (Makin and Bensmaia, 2017; Stein et al., 2014).

The finding that prior probabilities for a common cause were correlated for the ownership and 
synchrony data suggests a shared probabilistic computational process between the two multisen-
sory tasks. This result could account for the previously observed correlation at the behavioral level 
between individual susceptibility to the rubber hand illusion and individual temporal resolution 
(‘temporal window of integration’) in visuotactile synchrony perception (Costantini et al., 2016). It is 
not that having a narrower temporal window of integration makes one more prone to detect visuo-
tactile temporal mismatches leading to a weaker rubber hand illusion as the traditional interpreta-
tion assumes. Instead, our behavioral modeling suggests that the individual differences in synchrony 
detection and the rubber hand illusion can be explained by individual differences in how prior infor-
mation on the likelihood of a common cause is used in multisensory causal inference. This probabilistic 
computational explanation for individual differences in the rubber hand illusion emphasizes differ-
ences in how information from prior knowledge, bottom-up sensory correspondence, and sensory 
uncertainty is combined in a perceptual inferential process rather than there being ‘hard-wired’ 
differences in temporal windows of integration or trait differences in top-down cognitive processing 
(Eshkevari et al., 2012; Germine et al., 2013; Marotta et al., 2016). It should be noted that other 
multisensory factors not studied in the present study can also contribute to individual differences in 
the rubber hand illusion, notably as the relative reliability of proprioceptive signals from the upper 
limb (Horváth et al., 2020). The latter could be considered in future extensions of the current model 
that also consider the degree of spatial disparity between vision and proprioception and the role of 
visuoproprioceptive integration (Samad et al., 2015; Fang et al., 2019; Kilteni et al., 2015).

Conclusion
BCI models have successfully described many aspects of perception, decision making, and motor 
control, including sensory and multisensory perception of external objects and events. The present 
study extends this probabilistic computational framework to the sense of body ownership, a core 
aspect of self-representation and self-consciousness. Specifically, the study presents direct and quan-
titative evidence that body ownership detection can be described at the individual level by the infer-
ence of a common cause for vision and somatosensation, taking into account trial-to-trial sensory 
uncertainty. The fact that the brain seems to use the same probabilistic approach to interpret the 
external world and the self is of interest to Bayesian theories of the human mind (Ma and Jazayeri, 
2014; Rahnev, 2019) and suggests that even our core sense of conscious bodily self (Blanke et al., 
2015; Ehrsson, 2020; Tsakiris, 2017; de Vignemont, 2018) is the result of an active inferential 
process making ‘educated guesses’ about what we are.

Materials and methods
Participants
18 healthy participants naïve to the conditions of the study were recruited for this experiment (six 
males, aged 25.2±4 years, right-handed; they were recruited from outside the department, never 
having taken part in a bodily illusion experiment before). Note that in computational studies such as 
the current one, the focus is on fitting and comparing models within participants, i.e., to rigorously 
quantify perception at the single-subject level, and not only rely on statistical results at the group 
level. All volunteers provided written informed consent prior to their participation. All participants 
received 600 SEK (Swedish krona) as compensation for their participation (150 SEK per hr). All experi-
ments were approved by the Swedish Ethics Review Authority (Ethics number 2018/471-31/2).
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Inclusion test
In the main experiment, participants were asked to judge the ownership they felt toward the rubber 
hand. It was therefore necessary for them to be able to experience the basic rubber hand illusion. 
However, we know that approximately 20–25% of healthy participants do not report a clear and reli-
able rubber hand illusion (Kalckert and Ehrsson, 2014), and such participants are not able to make 
reliable ownership discriminations in psychophysics tasks (Chancel and Ehrsson, 2020), which were 
required for the current modeling study (they tended to respond randomly). Thus, all participants 
were first tested on a classical rubber hand illusion paradigm to ensure that they could experience 
the illusion. For this test, each participant sat with their right hand resting on a support beneath a 
small table. On this table, 15 cm above the hidden real hand, the participant viewed a life-sized 
cosmetic prosthetic male right hand (model 30,916 R, Fillauer, filled with plaster; a ‘rubber hand’) 
placed in the same position as the real hand. The participant kept their eyes fixed on the rubber 
hand while the experimenter used two small probes (firm plastic tubes, diameter: 7 mm) to stroke 
the rubber hand and the participant’s hidden hand for 12 s, synchronizing the timing of the stroking 
as much as possible. Each stroke lasted 1  s and extended approximately 1 cm; the strokes were 
applied to five different points along the real and rubber index fingers at a frequency of 0.5 Hz. The 
characteristics of the strokes and the duration of the stimulation were designed to resemble the 
stimulation later applied by the robot during the discrimination task (see below). Then, the partic-
ipant completed a questionnaire adapted from that used by Botvinick and Cohen, 1998, see also 
Chancel and Ehrsson, 2020 and Figure 4—figure supplement 1. This questionnaire includes three 
items assessing the illusion and four control items to be rated with values between –3 (‘I completely 
disagree with this item’) and 3 (‘I completely agree with this item’). Our inclusion criteria for a rubber 
hand illusion strong enough for participation in the main psychophysics experiment were as follows: 
(1) a mean score for the illusion statements (Q1, Q2, and Q3) of greater than 1 and (2) a difference 
between the mean score for the illusion items and the mean score for the control items of greater 
than 1. Three participants (two females) did not reach this threshold; therefore, 15 subjects partici-
pated in the main experiment (five males, aged 26.3±4 years, Figure 4—figure supplement 2). The 
inclusion test session lasted 30 min in total. After this inclusion phase, the participants were intro-
duced to the setup used in the main experiment.

Experimental setup
During the main experiment, the participant’s right hand lay hidden, palm down, on a flat support 
surface beneath a table (30 cm lateral to the body midline), while on this table (15 cm above the 
real hand), a right rubber hand was placed in the same orientation as the real hand aligned with 
the participants’ arm (Figure 4A). The participant’s left hand rested on their lap. A chin rest and 
elbow rest (Ergorest Oy, Finland) ensured that the participant’s head and arm remained in a steady 
and relaxed position throughout the experiments. Two robot arms (designed in our laboratory by 
Martti Mercurio and Marie Chancel, see Chancel and Ehrsson, 2020 for more details) applied 
tactile stimuli (taps) to the index finger of the rubber hand and to the participant’s hidden real index 
finger. Each robot arm was composed of three parts: two 17-cm-long, 3-cm-wide metal pieces and 
a metal slab (10×20 cm) as a support. The joint between the two metal pieces and that between the 
proximal piece and the support was powered by two HS-7950TH Ultra Torque servos that included 
7.4 V optimized coreless motors (Hitec Multiplex, USA). The distal metal piece ended with a ring 
containing a plastic tube (diameter: 7 mm) that was used to touch the rubber hand and the partic-
ipant’s real hand.

During the experiment, the participants wore augmented reality glasses: a Meta2 VR headset with 
a 90° field of view, 2560×1440 high-dpi display, and 60  Hz refresh rate (Meta View Inc). Via this 
headset, the uncertainty of the visual scene could be manipulated: The probability of a pixel of the 
scene observed by the participant turning white from one frame to the other varied (frame rate: 30 
images/s); when turning white, a pixel became opaque, losing its meaningful information (information 
on the rubber hand and robot arm touching the rubber hand) and therefore becoming irrelevant to 
the participant. The higher the probability of the pixels turning white becomes, the more uncertain 
the visual information becomes. During the experiment, the participants wore earphones playing 
white noise to cancel out any auditory information from the robots’ movements that might have 
otherwise interfered with the behavioral task and with illusion induction (Radziun and Ehrsson, 2018).
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Figure 4. Experimental setup (A) and experimental procedure (B and C) for the ownership judgment task. A participant’s real right hand is hidden 
under a table while they see a life-sized cosmetic prosthetic right hand (rubber hand) on the table (A). The rubber hand and real hand are touched by 
robots for periods of 12 s, either synchronously or with the rubber hand touched slightly earlier or later at a degree of asynchrony that is systematically 
manipulated (±150 ms, ±300 ms, or ± 500ms). The participant is then required to state whether the rubber hand felt like their own hand or not (‘yes’ or 
‘no’ forced choice task) (B). Using the Meta2 headset, three noise conditions are tested: 0 (top picture), 30 (middle picture), and 50% (bottom picture) 
visual noise (C).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Questionnaire.

Figure supplement 2. Mean questionnaire results for the participants included in the main experiment.
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Procedure
The main experiment involved two tasks conducted in two different sessions: a body ownership judg-
ment task and a synchrony judgment task. Both tasks were yes/no psychophysical detection tasks 
(Figure 4B).

Body ownership judgment task
In each trial, the participant was asked to decide whether the rubber hand felt like their own hand, 
i.e., to determine whether they felt the key phenomenological aspect of the rubber hand illusion 
(Botvinick and Cohen, 1998; Ehrsson et al., 2004; Longo et al., 2008). Each trial followed the same 
sequence. The robots repeatedly tapped the index fingers of the rubber hand and the actual hand 
six times each for a total period of 12 s in five different locations in randomized order (‘stimulation 
period’): immediately proximal to the nail on the distal phalanx, on the distal interphalangeal joint, 
on the middle phalanx, on the proximal interphalangeal joint, and on the proximal phalanx. All five 
locations were stimulated at least once in each 12 s trial, and the order of stimulation sites randomly 
varied from trial to trial. The participant was instructed to focus their gaze on the rubber hand. Then, 
the robots stopped while the participant heard a tone instructing them to verbally report whether the 
rubber hand felt like their own hand by saying ‘yes’ (the rubber hand felt like it was my hand) or ‘no’ 
(the rubber hand did not feel like it was my hand). This answer was registered by the experimenter. A 
period of 12 s was chosen in line with a previous rubber hand illusion psychophysics study (Chancel 
and Ehrsson, 2020), and because earlier studies with individuals susceptible to the illusion have 
shown that the illusion is reliably elicited in approximately 10 s (Ehrsson et al., 2004; Guterstam 
et al., 2013; Lloyd, 2007), different locations on the finger were chosen to prevent the irritation of the 
skin during the long psychophysics session and in line with earlier studies stimulating different parts of 
the hand and fingers to elicit the rubber hand illusion (e.g. Guterstam et al., 2011). During this period 
of stimulation, the participant was instructed to look at and focus on the rubber hand.

After the stimulation period and the body ownership judgment answer, the participant was asked 
to wiggle their right fingers to avoid any potential numbness or muscle stiffness from keeping their 
hand still and to eliminate possible carry-over effects to the next stimulation period by breaking the 
rubber hand illusion (moving the real hand while the rubber hand remained immobile eliminates the 
rubber hand illusion). The participant was also asked to relax their gaze by looking away from the 
rubber hand because fixating on the rubber hand for a whole session could have been uncomfortable. 
5 s later, a second tone informed the participant that the next trial was about to start; the next trial 
started 1 s after this sound cue.

Two variables were manipulated in this experiment: (1) the synchronicity between the taps that 
seen and those felt by the participants (asynchrony condition) and (2) the level of visual white noise 
added to the visual scene (noise condition). Seven different asynchrony conditions were tested. The 
taps on the rubber hand could be synchronized with the taps on the participant’s real hand (synchro-
nous condition) or could be delayed or advanced by 150, 300, or 500 ms. In the rest of this article, 
negative values of asynchrony (−150,–300, and –500 ms) mean that the rubber hand was touched 
first, and positive values of asynchrony (+150,+300, and +500 ms) mean that the participant’s hand 
was touched first. The seven levels of asynchrony appeared with equal frequencies in pseudorandom 
order so that no condition was repeated more than twice in a row. The participants did not know 
how many different asynchrony levels were tested (as revealed in unformal post-experiment inter-
views) and that no feedback was given on their task performance. Three different noise conditions 
were tested, corresponding to 0, 30, and 50% of visual noise being displayed, i.e., the pixels of the 
Meta2 headset screen could turn white from one frame to another with a probability of 0, 30, or 50% 
(Figure 4C). The three levels of noise also appeared with equal frequencies in pseudorandom order. 
During the experiment, the experimenter was blind to the noise level presented to the participants, 
and the experimenter sat out of the participants’ sight.

Visuotactile synchrony judgment task
During this task, the participant was asked to decide whether the visual and tactile stimulation they 
received happened at the same time, i.e., whether the felt and seen touches were synchronous or not. 
The procedure was identical to the body ownership detection task apart from a critical difference in 
the instructions, which was now to determine if the visual and tactile stimulations were synchronous 
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(instead of judging illusory rubber hand ownership). In each trial, a 12 s visuotactile stimulation period 
was followed by the yes/no verbal answer given by the participant and a 4 s break. The same two 
variables were manipulated in this experiment: the synchronicity between the seen and felt taps 
(asynchrony condition) and the level of visual white noise (noise condition). The asynchronies used 
in this synchrony judgment task were lesser than those of the ownership judgment task (±50, ±150, 
or ±300 ms instead of ±150, ±300, or ±500 ms) to maintain an equivalent difficulty level between 
the two tasks; this decision was made based on a pilot study involving 10 participants (three males, 
aged 27.0±4 years, different than the main experiment sample) who performed the ownership and 
synchrony tasks under 11 different levels of asynchrony (Appendix 1—table 3 and Figure 2). The 
noise conditions were identical to those used for the ownership judgment task.

The ordering of the tasks was counterbalanced across the participants. Each condition was repeated 
12 times, leading to a total of 252 judgments made per participant and task. The trials were randomly 
divided into three experimental blocks per task, each lasting 13 min.

Modeling
As explained in the introduction, we assumed that the rubber hand illusion is driven by the integra-
tion of visual and tactile signals in the current paradigm. To describe this integration, we designed a 
model in which the observer performs BCI; we compare this model to a non-Bayesian model. We then 
extended the same models of the synchrony judgment task and examined whether the same model 
with the same parameters could describe a participant’s behavior in both tasks.

BCI model for body ownership
We first specify the BCI model for body ownership. A more detailed and step-by-step description of 
the modeling can be found in Appendix 1.

Generative model
Bayesian inference is based on a generative model, which is a statistical model of the world that the 
observer believes to give rise to observations. By ‘inverting’ this model for a given set of observations, 
the observer can make an ‘educated guess’ about a hidden state. Therefore, we first must specify the 
generative model that captures both the statistical structure of the task as assumed by the observer 
and an assumption about measurement noise. In our case, the model contains three variables: the 
causal structure category ‍C‍, the tested asynchrony ‍s‍, and the measurement of this asynchrony by 
the participant ‍x‍. Even though the true frequency of synchronous stimulation (C=1) is 1/7=0.14, we 
allow it to be a free parameter, which we denote as psame. One can view this parameter as an incorrect 
belief, but it can equivalently be interpreted as a perceptual or decisional bias. Next, when C=1, the 
asynchrony s is always 0; we assume that the observer knows this. When C=2, the true asynchrony 
takes one of several discrete values; we do not assume that the observer knows these values or their 
probabilities and instead assume that the observer assumes that asynchrony is normally distributed 
with the correct SD ‍σS‍ of 348 ms (i.e. the true SD of the stimuli used in this experiment). In other 

words, 
‍
p
(
s|C = 2

)
= N

(
s; 0, σ2

s

)
‍
. Next, we assume that the observer makes a noisy measurement x 

of the asynchrony. We make the standard assumption (inspired by the central limit theorem) that this 
noise follows the below a normal distribution:

	﻿‍
p
(
x|s

)
= N

(
x; s, σ2

)
‍�

where the variance depends on the sensory noise for a given trial. Finally, we assume that the observer 
has accurate knowledge of this part of the generative model.

Inference
Now that we have specified the generative model, we can turn to inference. Visual and tactile inputs 
are to be integrated, leading to the emergence of the rubber hand illusion if the observer infers a 
common cause (‍C = 1‍) for both sensory inputs. On a given trial, the model observer uses ‍x‍ to infer the 
category ‍C‍. Specifically, the model observer computes the posterior probabilities of both categories, 

‍p
(
C = 1|x

)
‍ and ‍p

(
C = 2|x

)
‍, i.e., the belief that the category was ‍C‍. Then, the observer would report 
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‘yes, it felt like the rubber hand was my own hand’ if the former probability were higher, or in other 
words, when ‍d > 0‍, where

	﻿‍
d = log p

(
C=1|x

)
p
(

C=2|x
) .

‍�

This equation can be written as a sum of the log prior ratio and the log-likelihood ratio:

	﻿‍
d = log

(
psame

1−psame

)
+ log

(
p
(

xtrial |C=1
)

p
(

xtrial |C=2
)
)

#
‍�

The decision rule d>0 is thus equivalent to (see the Appendix 1)

	﻿‍ |x| < k‍�

where

	﻿‍ k =
√

K ‍�

and

	﻿‍
K = σ2 (

σ2
s + σ2)
σ2

s

(
2log psame

1−psame
+ log σ2

s + σ2

σ2

)

‍�

where ‍σ‍ is the sensory noise level of the trial under consideration. As a consequence, the decision 
criterion changes as a function of the sensory noise affecting the observer’s measurement (Figure 5). 
This is a crucial property of BCI and indeed a property shared by Bayesian models used in previous 
work on multisensory synchrony judgments (Magnotti et al., 2013), audiavisual spatial localization 
(Körding et al., 2007), visual searching (Stengård and van den Berg, 2019), change detection (Kesh-
vari et al., 2012), collinearity judgment (Zhou et al., 2020), and categorization (Qamar et al., 2013). 
The output of the BCI model is the probability of the observer reporting the visual and tactile inputs 
as emerging from the same source when presented with a specific asynchrony value ‍s‍:

	﻿‍
p
(

Ĉ = 1|s
)

= 0.5λ +
(
1 − λ

) (
Φ
(

s; k, σ2
)
− Φ

(
s;−k, σ2

))
‍�

Here, the additional parameter ‍λ‍ reflects the probability of the observer lapsing, i.e., randomly 
guessing. This equation is a prediction of the observer’s response probabilities and can thus be fit to 
a participant’s behavioral responses.

The BCI model has five free parameters: ‍psame‍: the prior probability of a common cause for vision 
and touch, independent of any sensory stimulation, ‍σ0, σ30, σ50‍ : the noise impacting the measure-
ment ‍x‍ specific to each noise condition, and ‍λ‍: a lapse rate to account for random guesses and 
unintended responses. We assumed a value of 348 ms for ‍σS‍ , i.e., ‍σS‍ is equal to the actual SD of the 
asynchronies used in the experiment, but we challenged this assumption later. Moreover, in our exper-
iment, the spatial parameters and the proprioceptive state of our participants are not manipulated 
or altered from one condition to the other. Thus, our model focuses on the temporal aspects of the 
visuotactile integration in the context of body ownership. In this, it differs from the model proposed 
by Samad et al., 2015 in which both spatial and temporal aspects were modeled separately and 
then averaged to obtain an estimate of body ownership (that they then compared with questionnaire 
ratings of rubber hand illusion).

Alternative models
BCI model for body ownership with a free level of uncertainty impacting the 
stimulation (BCI*)
For the BCI model, we assumed that the observer’s assumed stimulus distribution has the same SD 

‍σS‍ as the true stimulus distribution. We also tested a variant in which the assumed SD ‍σS‍ is a free 
parameter. As a result, this model is less parsimonious than the BCI model. The model has six free 
parameters ‍

(
psame, σ0, σ30, σ50, σS, and λ

)
‍. Nevertheless, the decision rule remains the same as that 

of the BCI model.
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Figure 5. Decision process for the emergence of the rubber hand illusion (RHI) according to the Bayesian 
and fixed criterion observers. (A) The measured asynchrony between the visual and tactile events for the low 
(orange) or high (red) noise level conditions and the probability of the different causal scenarios: the visual and 
tactile events come from one source, the observer’s body, or from two different sources. The probability of a 

Figure 5 continued on next page
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FC (non-Bayesian) model
An important alternative to the Bayesian model is a model that ignores variations in sensory uncer-
tainty when judging if the rubber hand is one’s own, for example, because the observer incorrectly 
assumes that sensory noise does not change. We refer to this as the FC model. The decision rule for 
the FC model then becomes the following:

	﻿‍ |x| < k0,‍�

where ‍k0‍ corresponds to an FC for each participant, which does not vary with trial-to-trial sensory 
uncertainty. If the decisional stage is independent of the trial-to-trial sensory uncertainty, the encoding 
stage is still influenced by the level of sensory noise. Thus, the output of the FC model is the proba-
bility of the observer reporting the illusion when presented with a specific asynchrony value ‍s‍:

	﻿‍
p
(
illusion|s

)
= 0.5λ +

(
1 − λ

) (
Φ
(

s; k0, σ2
)
− Φ

(
s;−k0, σ2

))
‍�

Again, the additional parameter ‍λ‍ reflects the probability of the observer lapsing, i.e., randomly 
guessing. This equation is a prediction of the observer’s response probabilities and can thus be fitted 
to a participant’s behavioral responses.

Parameter estimation
All model fitting was performed using maximum-likelihood estimation implemented in MATLAB (Math-
Works). We used both the built-in MATLAB function fmincon and the Bayesian adaptive directed search 
(BADS) algorithm (Acerbi and Ma, 2017), each using 100 different initial parameter combinations per 
participant. Fmincon is gradient based, while BADS is not. The best estimate from either of these two 
procedures was kept, i.e., the set of estimated parameters that corresponded to the maximal log-
likelihood for the models. Fmincon and BADS produced the same log-likelihood for the BCI, BCI*, and 
FC models for 12, 13, and 14 of the 15 participants, respectively. For the remaining participants, the 
BADS algorithm performed better. Moreover, the fitting procedure run 100 times (with different initial 
parameter combinations) led to the same set of estimated parameters at least 31 times for all partici-
pants and models. To validate our procedure, we performed parameter recovery. For this procedure, 
data simulated from random parameters were fitted using the models we designed. Because the 
generating random parameters were recovered, i.e., are similar to the estimated parameters, we are 
confident that the parameter estimation applied for the fitting procedure used in the current study is 
reliable (Appendix 1—figure 1 & Appendix 1—table 2).

common source is a narrow distribution (full curves), and the probability of two distinct sources is a broader 
distribution (dashed curve), both centered on synchronous stimulation (0 ms) such that when the stimuli are almost 
synchronous, it is likely that they come from the same source. When the variance of the measured stimulation 
increases from trial to trial, decision criteria may adjust optimally (Bayesian – light blue) or stay fixed (fixed – dark 
blue). The first assumption corresponds to the Bayesian causal inference (BCI) model, and the second corresponds 
to the fixed criterion (FC) model (see next paragraph for details). The displayed distributions are theoretical, 
and the BCI model’s psame is arbitrarily set at 0.5. (B) The decision criterion changes from trial to trial as a function 
of sensory uncertainty according to the optimal decision rule from the BCI model. Black curves represent this 
relationship for different psame values of 0.4–0.9 (from lightest to darkest). (C) From left to right, these last plots 
illustrate how the BCI model-predicted outcome is shaped by ‍psame‍ , ‍σ‍, and ‍λ‍, respectively. Left: ‍psame‍ = 0.8 
(black), 0.6 (green), and 0.9 (blue). Middle: ‍σ‍ = 150 ms (black), 100 ms (green), and 200 ms (blue). Right: ‍λ‍ = 0.05 
(black), 0.005 (green), and 0.2 (blue). (D) Finally, this last plot shows simulated outcomes predicted by the BCI 
model (in full lines and bars) and the FC model (in dashed lines and shredded bars). In this theoretical simulation, 
both models predict the same outcome distribution for one given level of sensory noise (0%); however, since 
the decision criterion of the BCI model is adjusted to the level of sensory uncertainty, an overall increase of the 
probability of emergence of the RHI is predicted by this Bayesian model. On the contrary, the FC model, which is a 
non-Bayesian model, predicts a neglectable effect of sensory uncertainty on the overall probability of emergence 
of the RHI.

Figure 5 continued
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Model comparison
The Akaike information criterion (AIC; Akaike, 1973) and Bayesian information criterion (BIC; Schwarz, 
1978) were used as measures of goodness of model fit. The lower the AIC or BIC, the better the fit. 
The BIC penalizes the number of free parameters more heavily than the AIC. We calculated AIC and 
BIC values for each model and participant according to the following equations:

	﻿‍ AIC = 2npar − 2logL∗
‍�

	﻿‍ BIC = npar log ntrials − 2 log L∗
‍�

where ‍L∗‍ is the maximized value of the likelihood, ‍npar‍ the number of free parameters, and ‍ntrial‍ the 
number of trials. We then calculated the AIC and BIC difference between models and summed across 
the participants. We estimated a CI using bootstrapping: 15 random AIC/BIC differences were drawn 
with replacement from the actual participants’ AIC/BIC differences and summed; this procedure was 
repeated 10,000 times to compute the 95% CI.

As an additional assessment of the models, we compute the coefficient of determination ‍R2‍ 
(Nagelkerke, 1991) defined as

	﻿‍
R2 = 1 − exp

(
− 2

n
(
logL

(
M
)
− logL

(
M0

)))
‍�

where ‍logL
(
M
)
‍ and ‍logL

(
M0

)
‍ denote the log-likelihoods of the fitted and the null model, respec-

tively, and n is the number of data points. For the null model, we assumed that an observer randomly 
chooses one of the two response options, i.e., we assumed a discrete uniform distribution with a 
probability of 0.5. As in our case the models’ responses were discretized to relate them to the two 
discrete response options, the coefficient of determination was divided by the maximum coefficient 
(Nagelkerke, 1991) defined as

	﻿‍
max

(
R2

)
= 1 − exp

(
2
n logL

(
M0

))
‍.�

We also performed Bayesian model selection (Rigoux et al., 2014) at the group level to obtain the 
exceedance probability for the candidate models (i.e. the probability that a given model is more likely 
than any other model given the data) using the VBA (Variational Bayesian Analysis) toolbox (Rigoux 
et  al., 2014). With this analysis, we consider a certain degree of heterogeneity in the population 
instead of assuming that all participants follow the same model and assess the a posteriori probability 
of each model.

Ownership and synchrony tasks
The experimental contexts of the ownership and synchrony judgment tasks only differed in the instruc-
tions given to the participants regarding which perceptual feature they were to detect (rubber hand 
ownership or visuotactile synchrony). Thus, the bottom-up processing of the sensory information is 
assumed to be the same. In particular, the uncertainty impacting each sensory signal is likely to be the 
same between the two tasks, since the sensory stimulation delivered to the observer is identical. The 
difference in the participants’ synchrony and ownership perceptions should be reflected in the a priori 
probability of the causal structure. For our BCI model, this means that the ‍σ0, σ30, and σ50‍ parame-
ters are assumed to be the same for the two tasks. The same applies for the lapse rate ‍λ‍ that depends 
on the observer and not on the task. In contrast, the prior probability for a common cause ‍psame‍ could 
change when a different judgment (ownership or synchrony) is assessed.

We used two complementary approaches to test whether people show different prior probabil-
ities of a common cause for body ownership and synchrony perceptions: an extension analysis and 
a transfer analysis. In the extension analysis, we applied our BCI model to both sets of data and 
compared the fit of the model with all parameters ‍

(
psame, σ0, σ30, σ50, σS, and λ

)
‍ shared between 

tasks to a version of the model with one probability of a common cause ‍psame, ownership‍ for the body 
ownership task only and one probability of a common cause ‍psame, synchrony‍ for the synchrony task only. 
In the transfer analysis, we used the estimated parameters for one task (ownership or synchrony) to 
predict the data from the other task (synchrony or ownership). We compared a full transfer, in which 
all previously estimated parameters were used, to a partial transfer, in which ‍psame‍ was left as a free 
parameter. We again used the AIC and BIC to compare the different models.

https://doi.org/10.7554/eLife.77221
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Appendix 1
1. Bayesian causal inference model for body ownership
Bayesian models typically require three steps: first, specification of the generative model, which 
represents the statistics of the variables and their relationships, as believed by the observer; second, 
specification of the actual inference process, in which the observer uses a particular observation 
and ‘inverts’ the generative model to build a posterior distribution over the world state of interest; 
and third, specification of the predicted response distribution, which can be directly related to data. 
Below, we lay out these three steps for the body ownership task, in which the observer judges 
whether the rubber hand is theirs or not. For synchrony detection task, everything is the same except 
for the interpretation of the category variable ‍C‍.

Step 1: generative model
We first need to specify the generative model, which captures the statistical structure of both the task 
and the measurement noise, as assumed by the observer. It contains three variables: the category, ‍C‍, 
the physical visuotactile asynchrony, ‍s‍, and the noisy measurement of this asynchrony, ‍x‍. The variable 
‍C‍ represents the high-level scenario:

‍C = 1‍: only one common source, hence the rubber hand is my hand.
‍C = 2‍: two different sources, hence the rubber hand is not my hand.
The a priori probability of a common cause, before any sensory stimulation is delivered to the 

observer is expressed as:

	﻿‍ p
(
C = 1

)
= psame‍�

Next, we assume that the observer correctly assumes that the asynchrony ‍s‍ is always zero when 
‍C = 1‍, and incorrectly assumes that the asynchrony follows a Gaussian distribution with standard 
deviation ‍σs‍ when ‍C = 2‍:

	﻿‍ p
(
s|C = 1

)
= δ

(
s
)
‍� (1)

	﻿‍
p
(
s|C = 2

)
= N

(
s; 0, σ2

s

)
‍� (2)

Note that the distribution ‍p
(
s|C = 2

)
‍ is not the experimental asynchrony distribution that would 

be a mixture of delta functions, because in the ‍C = 2‍ condition, we presented a discrete set of 
asynchronies (±500 ms, ±300 ms, ±150 ms, and 0 ms). Why do we assume that the observer’s 
assumed asynchrony distribution for ‍C = 2‍ is different from the experimental one? We reasoned that 
it is unlikely that our participants were aware of the discrete nature of the experimental distribution, 
and that it is more likely that they assumed the distribution to be continuous. We use a Gaussian 
distribution because, in view of its simplicity and frequent occurrence, this seems to be a distribution 
that participants could plausibly assume. We tested both a model in which the SD of the Gaussian 
is equal to the experimental SD, and one in which it is not necessarily so (and therefore fitted as a 
free parameter).

Finally, we assume that the observer assumes that the measured asynchrony ‍x‍ is affected by a 
Gaussian noise ‍σ‍:

	﻿‍
p
(
x|s

)
= N

(
x; s, σ2

)
‍� (3)

This assumption is standard and loosely motivated by the central limit theorem.

Step 2: inference
We now move to the inference performed by the observer. Visual and tactile inputs are to be 
integrated, thus leading to the emergence of the rubber hand illusion if the observer inferred a 
common cause (‍C = 1‍) for both sensory inputs. On a given trial, the observer receives a particular 
measured asynchrony ‍xtrial‍ (simply a number) and infers the category ‍C‍ by computing the posterior 
probabilities ‍p

(
C = 1|xtrial

)
‍ and ‍p

(
C = 2|xtrial

)
‍. These probabilities are conveniently combined into 

the log posterior ratio ‍d‍:

https://doi.org/10.7554/eLife.77221
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	﻿‍
d = log

(
p
(

C=1|xtrial
)

p
(

C=2|xtrial
)
)
‍�

(4)

The observer would report ‘yes, it felt like the rubber hand was my own hand’ if ‍d‍ is positive. 
Equation (4) can be written as a sum of the log prior ratio and the log-likelihood ratio:

	﻿‍
d = log

(
psame

1−psame

)
+ log

(
p
(

xtrial |C=1
)

p
(

xtrial |C=2
)
)
‍�

(5)

Further evaluation of this expression requires us to calculate two likelihoods. The likelihood of 
‍C = 1‍ is

	﻿‍ p
(
xtrial|C = 1

)
= p

(
xtrial|s = 0

)
‍�

	﻿‍
= N

(
xtrial; 0, σ2

)
‍�

where we used Equations (1) and (3). The likelihood of ‍C = 2‍ is

	﻿‍
p
(
x|C = 2

)
=
ˆ

p
(
xtrial|s

)
p
(
s|C = 2

)
ds

‍�

	﻿‍
= N

(
xtrial; 0, σ2 + σ2

s

)
‍�

where we used Equations (2) and (3). Substituting both likelihoods into Equation (5), we can 
now calculate ‍d‍:

	﻿‍
d = log

(
psame

1−psame

)
+ log

(
N
(

xtrial;0, σ2)
N
(

xtrial;0, σ2+σ2
s
)
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(6)
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2 log
(

σ2+σ2
s

σ2

)
− x2

trial
2

(
1
σ2 − 1

σ2+σ2
s

)
‍�

(7)

As mentioned above, we assume that the observer reports ‘yes, the rubber hand felt like my own 
hand’ if ‍d > 0‍. Using Equation (7), we can now rewrite this condition in terms of ‍xtrial‍.

	﻿‍

x2
trial
2
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s
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< log
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Then, we define

	﻿‍
K = σ2(σ2+σ2

s
)

σ2
s

(
2log psame

1−psame
+ logσ2+σ2

s
σ2

)

‍�

If ‍K < 0‍, which can theoretically happen when ‍psame‍ is very small, then the condition ‍d > 0‍ is never 
satisfied, regardless of the value of ‍xtrial‍. This corresponds to the (unrealistic) case that it is so a priori 
improbable that there is a common cause that no amount of sensory evidence can override that 
belief. If ‍K < 0‍, the condition ‍d > 0‍ is satisfied when this condition is equivalent to

	﻿‍
∣∣xtrial

∣∣ < k‍�

where we call ‍k =
√

K ‍ the decision criterion. Notice that ‍k‍ takes into account both ‍psame‍ and the 
sensory uncertainty. This concludes our specification of the Bayesian inference performed by our 
model observer.
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Step 3: response probability
We complete the model by calculating the probability that our model observer responds ‘I felt 
like the rubber hand was my hand’ (which we denote by ‍C=1‍) for the visuotactile asynchrony ‍strial‍ 
experimentally presented on a given trial. The first case to consider is ‍K < 0‍. Then,

	﻿‍
p
(

Ĉ = 1|strial

)
= 0

‍�

Otherwise,

	﻿‍

p
(

Ĉ = 1|strial

)
= Prxtrial |strial

(��xtrial
�� < k

)

= Φ
(

k; strial,σ2
)
− Φ

(
−k; strial,σ2

)
‍�

	﻿‍
= Φ

(
k; strial,σ2

)
− Φ

(
−k; strial,σ2

)
‍�

where ‍Φ‍ denotes the cumulative normal distribution. Finally, we introduce a lapse rate, which is 
the probability of making a random response (which we assume to be yes or no [the rubber hand felt 
like my hand] with equal probability). Then, the overall response probability becomes

	﻿‍
pwith lapse

(
Ĉ = 1|strial

)
= 0.5λ +

(
1 − λ

) (
Φ
(

k; strial,σ2
)
− Φ

(
−k; strial,σ2

))
‍.�

It is this outcome probability that we want to fit to our data. Five free parameters need to be fitted: 

‍θ =
[
psame,σ0,σ30, σ50, λ

]
‍. In the basic model, the source noise ‍σs‍ is fixed, its value corresponding to 

the real SD of the asynchronies used in the experiment (348 ms).

2. Alternative models
BCI model with free source noise: BCI*
This model shares the generative model and decision rule of the Bayesian causal inference (BCI) 
model (Equation 7). However, the level of noise impacting the stimulation ‍σs‍ is considered as a free 
parameter instead of being fixed. Thus, six parameters need to be fitted: ‍θ =

[
psame,σ0,σ30, σ50, σs, λ

]
‍.

BCI model with a minimal asynchrony different from 0: BCI_bias
We also designed a model that did not assume that the observer treats an asynchrony of 0 as 
minimal. In this alternative model, the decision criterion is the same as in the BCI model (Equation 
7); however, a parameter μ (representing the mean of the distribution of asynchrony) is taken into 
account when computing the predicted answer in the following step:

	﻿‍
pwith lapse

(
Ĉ = 1|strial

)
= 0.5λ +

(
1 − λ

) (
Φ
(

k + µ; strial,σ2
)
− Φ

(
−k + µ; strial,σ2

))
‍�

Thus, six parameters need to be fitted: ‍θ =
[
psame,σ0,σ30, σ50, µ, λ

]
‍.

Fixed-criterion model: FC
This model shares the generative model with the BCI models, but the variations of the level of 
sensory uncertainty from trial to trial are not taken into account in the decision rule (Equation 7). 
Because ‍psame‍ remains constant in our experiment, the decision rule is equivalent to reporting ‘yes, 
the rubber hand felt like my hand’ if the measured asynchrony is smaller than a constant ‍k0‍ :

	﻿‍
∣∣xtrial

∣∣ < k0‍.�

Five free parameters need to be fitted: ‍θ =
[
k0,σ0,σ30, σ50, λ

]
‍.

Note that if the decisional stage in the FC model is independent of the trial-to-trial sensory 
uncertainty, the encoding stage is still influenced by the level of sensory noise. Thus, the output of 
the FC model is the probability of the observer reporting the illusion when presented with a specific 
asynchrony value ‍s‍:

	﻿‍
pwith lapse

(
Ĉ = 1|strial

)
= 0.5λ +

(
1 − λ

) (
Φ
(

k0; strial,σ2
)
− Φ

(
−k0; strial,σ2

))
‍�

https://doi.org/10.7554/eLife.77221


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Chancel et al. eLife 2022;11:e77221. DOI: https://doi.org/10.7554/eLife.77221 � 32 of 35

As in the main BCI model, the additional parameter ‍λ‍ reflects the probability of the observer 
lapsing, i.e., randomly guessing. This equation is a prediction of the observer’s response probabilities 
and can thus be fit to a participant’s behavioral responses.

3. Model fitting and comparison
Model fitting
For each model, we want to find the combination of parameters that best describe our data ‍D‍, i.e., 
the yes/no responses to the presented asynchronies. We use maximum-likelihood estimation to 
estimate the model parameters, which for a given model, we collectively denote by ‍θ‍. The likelihood 
of ‍θ‍ is the probability of the data ‍D‍ given ‍θ‍:

	﻿‍ L
(
θ
)

= p
(
D|θ

)
‍.�

We next assume that the trials are conditionally independent so that the likelihood becomes a 
product over trials:

	﻿‍
L
(
θ
)

=
∏

trial t
p
(

Ĉt|st, σt, θ
)
‍�

where ‍st‍ and ‍σt‍ are the asynchrony and the noise level on the tth trial, respectively. It is convenient 
to maximize the logarithm of the likelihood, which is

	﻿‍
logL

(
θ
)

=
∑

trial t
logp

( �Ct|st, σt, θ
)
‍�

(8)

We now switch notation and group trials by noise condition (labeled ‍i‍ and corresponding to the 
three noise levels) and stimulus condition (labeled ‍j‍ and corresponding to the seven asynchronies). 
Then, we can compactly denote the observed data by ‍n1ij‍ and ‍n0ij‍, which are the numbers of times 

the participant reported ‘yes’ and ‘no,’ respectively, in the ‍
(
i, j

)th
‍ condition. Then, Equation 8 

simplifies to

	﻿‍
logL

(
θ
)

=
∑
i, j

[
n1ijlogp

(
Ĉ = 1|sj, θ

)
+ n0ijlog

(
1 − p

(
Ĉ = 1|sj, θ

))]
‍�

The hard and plausible bounds used in the optimization algorithms can be found in the 
Appendix 1—table 1.

Appendix 1—table 1. Bounds used in the optimization algorithms.

Parameter Type Hard bound
Plausible 
bound

‍psame‍ Probability (0, 1) (0.3, 0.7)

σ
Sensory noise 
(log) (−Inf, +Inf) (–3, 9)

λ Lapse (0, 1) (eps, 0.2)

‍k0‍
Asynchrony 
(log) (−Inf, +Inf) (–3, 9)

Parameter recovery
In order to qualitatively assess our fitting process, we performed parameter recovery. We used 
random sets of parameters ‍θ =

[
psame,σ0,σ30, σ50, σs, λ

]
‍ to generate data from the BCI model, then 

fitted the BCI model to these simulated data. We then did three assessments: (1) the log likelihoods 
of the fitted parameters were higher than of the generating parameters Negative log-likelihood: 
NLL (Minitial)=920 ± 78; NLL (Mrecovered)=812 ± 79 and than of an alternative model NLL (FC)=948 
± 89; (2) the model fits to the simulated data looked excellent (Appendix  1—figure 1); (3) the 
generating parameters were roughly recovered after this procedure. Thus, parameter recovery was 
successful (Appendix 1—table 1).

https://doi.org/10.7554/eLife.77221
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Appendix 1—figure 1. The figure displays simulated ‘yes (the rubber hand felt like my own hand)’ answers as a 
function of visuotactile asynchrony (dots) and corresponding Bayesian causal inference (BCI) model fit (curves). As 
in the main text, black, orange, and red correspond to the 0, 30, and 50% noise levels, respectively.

Appendix 1—table 2. Initial parameters used to generate the simulations and recovered 
parameters.

Participant

Initial Recovered

‍psame‍ ‍σ0‍ ‍σ30‍ ‍σ50‍ ‍λ‍ ‍psame‍ ‍σ0‍ ‍σ30‍ ‍σ50‍ ‍λ‍

S1 0.53 246 164 129 0.09 0.51 264 176 133 0.11

S2 0.74 183 204 130 0.15 0.86 152 171 109 0.21

S3 0.39 281 96 223 0.15 0.41 313 111 251 0.09

S4 0.90 97 32 85 0.02 0.89 94 33 83 0.02

S5 0.73 185 96 29 0.07 0.74 176 101 31 0.07

S6 0.54 238 198 215 0.19 0.50 294 221 275 0.00

S7 0.26 138 275 110 0.12 0.27 151 17,803 123 0.12

S8 0.90 1 240 141 0.01 0.87 25 256 146 0.01

S9 0.69 7 265 296 0.08 0.66 0 274 316 0.06

S10 0.19 10 142 12 0.05 0.36 36 4776 4 0.05

S11 0.75 50 3 213 0.16 0.76 47 34 230 0.18

S12 0.69 108 270 191 0.10 0.67 111 272 213 0.09

S13 0.81 224 46 181 0.08 0.79 237 48 193 0.06

S14 0.22 22 203 83 0.01 0.22 34 232 76 0.02

S15 0.40 215 247 156 0.05 0.39 232 223 157 0.03

Model comparison
We used the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) to 
compare models. These quantities are calculated for each model and each participant:

https://doi.org/10.7554/eLife.77221
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	﻿‍ AIC = 2npar − 2logL∗
‍�

	﻿‍ BIC = ntriallognpar − 2logL∗
‍�

where ‍L∗‍ is the maximized value of the likelihood, ‍npar‍ the number of free parameters, and ‍ntrial‍ 
the number of trials. To compare two models, we calculated the difference in AIC between the 
two models per participant and summed the differences across the 15 participants. We obtained 
CIs through bootstrapping: we drew 15 random AIC differences with replacement from the actual 
participants’ AIC differences, then summed those. This procedure was repeated 10,000 times to 
compute the 95% CI. The same analysis was also conducted for the BIC results.

4. Pilot experiment and asynchrony sample adjustment
We chose to match qualitatively difficulty by adjusting the degree of asynchrony in the synchrony 
judgment task after analyzing the results from 10 participants (six women, 26±4 years) in a pilot 
study. We only used the zero-noise condition in this pilot and tested identical asynchronies in the two 
tasks (from –500 ms to +500 ms), otherwise, the procedure was identical to the main experiment. 
As shown in the table below, in the ±500 ms and the ±300 ms conditions, the number of trials for 
which the visuotactile stimulation was perceived as synchronous was consistently very low or never 
happened (zeros) in many cases. This observation suggests that the synchrony task was too easy and 
that it would not produce behavioral data that would be useful for model fitting or testing the BCI 
model. Thus, we adjusted the asynchrony conditions in the synchrony task to make this task more 
challenging and more comparable to the ownership judgment task. Note that we could not change 
the asynchronies in the ownership task to match the synchrony task because we need the longer 300 
ms and 500 ms asynchronies to break the illusion effectively.

Appendix 1—table 3. Pilot data. 

Number of ‘yes’ (the visual and tactile stimulation were synchronous) answers in the synchrony 
judgment task and of ‘yes’ (the rubber hand felt like it was my own hand) answers in the body 
ownership task (total number of trials per condition: 12).

Participant

Synchrony judgment Ownership judgment

–500 –300 –150 0 150 300 500 –500 –300 –150 0 150 300 500

P1 0 0 5 11 4 0 0 0 1 6 7 3 4 0

P2 0 0 2 12 3 0 0 9 12 12 12 12 10 0

P3 0 0 1 12 2 0 0 0 2 11 12 12 9 0

P4 0 0 1 12 1 1 0 4 6 9 11 11 11 8

P5 0 1 3 11 1 0 0 0 3 7 12 6 2 0

P6 0 0 0 0 0 0 0 11 12 12 12 11 9 7

P7 0 0 1 9 2 0 0 0 8 12 12 12 2 0

P8 0 0 2 10 0 1 0 5 6 8 11 8 4 2

P9 1 0 1 12 3 0 0 3 7 10 12 3 2 0

P10 0 0 3 12 2 0 0 0 4 10 12 5 2 0

To assess if this change in asynchrony range between tasks may explain the lower prior probability 
for a common cause in the synchrony detection task, we applied our extension analysis to the pilot 
data to test the BCI model on tasks with identical asynchronies. The pilot study did not manipulate the 
level of sensory noise (only the 0% noise level was included). The Appendix 1—figure 2 shows the 
key results regarding the estimated psame. The same trend was observed as in the main experiment: 
the estimated a priori probability for a common cause for synchrony judgment was lower than for 
body ownership. However, for more than half of our pilot participants, psame for body ownership 
reaches the extremum (psame=1). This ceiling effect probably is because the synchrony task was too 
easy when using asynchronies of 300 ms and 500 ms as in the ownership task; it lacked challenging 
stimulation conditions required to assess the participants’ perception as a gradual function finely. 
This observation convinced us further that we needed to make the synchrony judgment task more 
difficult by reducing the longer asynchronies to obtain high-quality behavioral data that would allow 

https://doi.org/10.7554/eLife.77221
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us to test the subtle effects of sensory noise, compare different models, and compare with the 
ownership judgment task in a meaningful way. From a more general perspective, different tasks 
may interact differently with sensory factors, but we argue that such task differences is most likely 
reflected in a change in prior. Even if our model cannot rule out some task-related influences on 
sensory processing, our interpretation that the priors are genuinely different between the two tasks 
is consistent with previous studies that examined the relationship between synchrony perception 
and body ownership (Costantini et al., 2016; Chancel and Ehrsson, 2020; Maselli et al., 2016; see 
introduction).

Appendix 1—figure 2. Correlation between the prior probability of a common cause psame estimated for the 
ownership and synchrony tasks in the extension analysis in the pilot study (left) and the main study (right). The 
solid line represents the linear regression between the two estimates, and the dashed line represents the identity 
function (x=f[x]).

https://doi.org/10.7554/eLife.77221
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